

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at yurii.rabeshko@mail.com. The project team will review and investigate all complaints, and will respond in a way that it deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [http://contributor-covenant.org], version 1.4, available at http://contributor-covenant.org/version/1/4 [http://contributor-covenant.org/version/1/4/]

Contributing

It’s an open source project and we love to receive contributions from our community — you! There are many ways to contribute, from writing tutorials or blog posts, improving the documentation, submitting bug reports and feature requests or writing code which can be incorporated into pybitrix24 itself.

All members of our community are expected to follow our Code of Conduct. Please make sure you are welcoming and friendly in all of our spaces.

Issues

Before you submit an issue, please search the issue tracker first, maybe an issue for your problem already exists and the discussion might inform you of workarounds readily available.

We want to fix all the issues as soon as possible, but before fixing a bug we need to reproduce and confirm it. In order to reproduce bugs we ask you to provide a minimal reproduction scenario that include:

	Version of the client used.

	Environment information (3rd-party libraries, technology stack etc.).

	A use-case that fails!

Pull requests

Working on your first Pull Request? You can learn how from this free series, How to Contribute to an Open Source Project on GitHub [https://egghead.io/series/how-to-contribute-to-an-open-source-project-on-github].

If you would make PR for something that is bigger than a one or two line fix:

	Be sure you are following:

	The code style for the project: PEP-8 [https://www.python.org/dev/peps/pep-0008/].

	Commit message convention: sentence case, present time.

	Create your own fork of the code.

	Do some changes in your fork.

	Add automated tests covering the changes.

	Submit a pull request.

Running tests

	Replace environment variables with real values in Makefile.

	Run all automated tests (unit and E2E):

make test

pybitrix24

The simplest zero dependency polyversion Python library for Bitrix24 REST API.

Features

	Polyversion. Supported Python versions: 2.7, 3.5+.

	Zero dependency. It’s fast, lightweight and secure.

	Reliable. Test coverage is more than 80%.

	Just simple. Examples of usage and clear sources.

Installation

Install using pip [https://pip.pypa.io/en/stable/]:

$ pip install pybitrix24

Getting started

Preparation

The current section and next one can be skipped if only webhooks will be used.

To start making requests it’s necessary to create an application [https://training.bitrix24.com/rest_help/bitrix24_apps/index.php] in the marketplace first. Then create an instance of the main class with the minimum required configuration that contains hostname, client ID and secret arguments (hereafter placeholders prefixed with “my” will be used instead of real values):

>>> from pybitrix24 import Bitrix24
>>> bx24 = Bitrix24('my-subdomain.bitrix24.com', 'my.client.id', 'MyClientSecret')

Now is the time to authorize.

Bitrix24 uses OAuth2 [https://training.bitrix24.com/rest_help/oauth/authentication.php] and authorization code grant [https://tools.ietf.org/html/rfc6749#section-1.3.1] for authorization of applications. It means that account owner’s credentials are hidden from developers for security reasons, therefore, it’s not possible to obtain authorization code programmatically. The account owner should be always present when access is granted.

However, to make life a bit simpler there is a helper method that builds an authorization URL for requesting an authorization code:

>>> bx24.build_authorization_url()
'https://my-subdomain.bitrix24.com/oauth/authorize/?client_id=my.client.id&response_type=code'

Finally, when an authorization code is received both access [https://tools.ietf.org/html/rfc6749#section-1.4] and refresh tokens [https://tools.ietf.org/html/rfc6749#section-1.5] can be obtained:

>>> bx24.obtain_tokens('AnAuthorizationCode')
{'access_token': 'AnAccessToken', 'refresh_token': 'ARefreshToken', ...}

As it was mentioned earlier it’s not possible to get the authorization code automatically but it’s possible to refresh tokens after initial receiving to make the session longer (note that both tokens have 1 hour lifetime after that they’ll be expired and an authorization code must be granted again):

>>> bx24.refresh_tokens()
{'access_token': 'ANewAccessToken', 'refresh_token': 'ANewRefreshToken', ...}

Congratulations, all the preparatory work is done!

Requesting resources with an access token

A further turn for requesting Bitrix24 resources. An access token injects automatically for all methods prefixed with call_ that are mentioned in this section.

To make a single call (this example requires the following permissions: user):

>>> bx24.call('user.get', {'ID': 1})
{'result': {...}}

To make a batch call that is a few calls per request (this example requires the following permissions: user,department):

>>> bx24.call_batch({
... 'get_user': ('user.current', {}), # or 'user.current'
... 'get_department': {
... 'method': 'department.get',
... 'params': {'ID': '$result[get_user][UF_DEPARTMENT]'}
... }
... })
{'result': {'result': {...}}}

To bind an event (this method calls event.bind under the hood):

>>> bx24.call_event_bind('OnAppUpdate', 'https://example.com/')
{'result': {...}}

To unbind an event (this method calls event.unbind under the hood):

>>> bx24.call_event_unbind('OnAppUpdate', 'https://example.com/')
{'result': {...}}

Requesting resources with a webhook code

Requesting resources with an authorization code is suitable for development of 3rd-party applications that are often quite cumbersome. However, sometimes it’s enough to send a few simple calls. This is where webhooks come to action.

If only webhooks are used the minimum required configuration is as simple as the following (use user_id argument if you need to make webhook calls on behalf of another user, by default 1 is used):

>>> from pybitrix24 import Bitrix24
>>> bx24 = Bitrix24('my-subdomain.bitrix24.com')

To make an inbound webhook call (this example requires the following permissions: user):

>>> bx24.call_webhook('xxxxxxxxxxxxxxxx', 'user.get', {'ID': 1})
{'result': {...}}

To make a batch call of inbound webhooks (this example requires the following permissions: user,department):

>>> bx24.call_batch_webhook('xxxxxxxxxxxxxxxx', {
... 'get_user': ('user.current', {}), # or 'user.current'
... 'get_department': {
... 'method': 'department.get',
... 'params': {'ID': '$result[get_user][UF_DEPARTMENT]'}
... }
... })
{'result': {'result': {...}}}

That’s the end of the quick introduction. Thanks!

For more details, please, explore source code or ask me [https://github.com/yarbshk/pybitrix24/issues/new]. Good luck!

Copyright and License

Copyright © 2017-2020 Yurii Rabeshko. Code released under the MIT license.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

